
 Panova 1

Lane Department of Computer Science and Electrical Engineering

CpE 271L: Digital Logic Laboratory
Final Project: Design of a Simple CPU

Spring 2025
Report Due By: 5/2/2025

 Panova 2

Table of Contents
Introduction​ 3
Hardware Description​ 3
Software Description​ 4
Description of VHDL files​ 5

Program Counter​ 5
Reg​ 5
SevenSeg​ 5
ALU​ 6
TwoToOneMux​ 6
Memory_8_by_32​ 6
Control Unit​ 7
CPU​ 7

Problems Occurred & Solutions​ 8
Competed Code​ 9

ALU code​ 9
memory_8_by_32 code​ 10
ProgramCounter code​ 11
reg code​ 12
sevenseg code​ 13
TwoToOneMux code​ 14
ControlUnit code​ 15
CPU code​ 19

Finite State Machine​ 25
Block Diagram​ 26
Waveform snip​ 27
Waveform Result Discussion​ 28
Conclusion​ 29

West Virginia University – Statler College of Engineering and Mineral Resources

 Panova 3

Introduction

This document outlines the theory, procedure, and results for Nathaniel Muhs and Daria

Panova’s final project. For this project we were asked to create a simple CPU using the

information and knowledge that we have acquired throughout this semester. This project uses the

DE 10-lite development board and the Quartus prime software to model the simple CPU. This

project was a valuable experience to apply the knowledge that we learned this semester.

Hardware Description

This lab and project utilizes the DE10-lite prototype development board to represent the circuit

and hardware. The DE10-lite board is a Field-programmable gate array chip installed in this board to

model its versatility and ease of use. FPGA boards are a valuable tool in electronics prototyping due to

their ability to be easily troubleshooted and reprogrammed. This ability to be easily reprogrammed means

that they are perfect for this type of project. When we had a bug or mistake in our code it was easy to fix

the problem and reupload to the board for efficient testing.

 Panova 4

Software Description

Along with the hardware we needed a language to program the DE10-lite board in. For this project we

chose to go with the Quartus Prime software to program the board in VHSIC Hardware Description

Language. Quartus Prime was an easy software for us to choose considering its compatibility with the

FPGA board. Quartus Prime has a fantastic user interface, Options, and Pin Planner that were vital for the

iterative phase of this project. The only downfall of this software surfaced when our knowledge of the

software was put to the test. Our training of the Quartus Prime software is extremely limited, we were

never explicitly taught how to use the software and were thus expected to use resources elsewhere. I

watched youtube videos to grow my knowledge of the software and its features.

 Panova 5

Description of VHDL files

Program Counter

The program counter code is a register that holds the memory address of the next

instruction to be performed. The CPE performs the instruction that is held within the program

counter. Once the instruction is performed that PC is incremented and stores the next instruction

to be performed. This cycle continues with the different instructions held within memory.

Reg

​ The register code is fundamental to this project and is utilized in many aspects of its

operation. The register code is utilized by the Accumulator, Instruction Register, and Memory

Address Register. All of these registers reuse the code in different applications and features. The

fundamental requirements for the register to output a new value is, a positive edge trigger and

load bit 1.

SevenSeg

​ The SevenSegment display code is utilized to display the values that the CPU computes.

For the binary numbers to be displayed on the hexadecimal display they had to be converted.

This code is utilized for that translation from binary to hexadecimal. Specific segments of the

seven segment display were illuminated to display the hexadecimal number on the display. Or

instance segments b and c were illuminated to display the number 1.

 Panova 6

ALU

​ The arithmetic logic unit (ALU) was a fundamental part of this project that can not be

overlooked. The ALU performs an arithmetic operation on two inputs then outputs the answer to

the specific instruction. There were 4 main operations that could be performed by the ALU,

addition, subtraction, bitwise OR, and Bitwise AND. The ALU operation input would specify the

operation to be performed on two binary number inputs.

TwoToOneMux

​ This is a two to one Multiplexer that is used to determine which of two inputs is sent to

the output based on the control signal. The two input values are from the Program Counter and

Instruction Register. The output goes to the memory address register (MAR). The control signal

is sent by the control unit of the CPU.

Memory_8_by_32

​ This code was written in lab number 9 of this course. This code creates a 8 by 32

Random access memory to be utilised. The RAM can either be read to write depending on if the

Write_Enabel bit is higher or low. If the WE pin is high that means that the data is to be written

to the RAM and stored. if the WE pin is low that means that the data at that location should be

sent to the output of the Read_addr.

 Panova 7

Control Unit

If the CPU is considered the brain of a computer the Control Unit would be the brain of

the CPU. The control unit is best described as a state machine that executes a specific set of

instructions given a specific flow. The three instructions that can be performed by the control

unit are loadA, addA, storeA. These three steps are performed in this order to insure the

reliability of the CPU.

CPU

The CPU file is where all of this code comes together. All of the other files demonstrate

small functions of the overall CPU, the CPU file brings all of that together in a cohesive file. The

first bit of our code are component statements of the smaller parts like the pc and alu. The next

big chunk are the signal initializations. signals were declared as they can be used as both input

and output later on. The following code that is highlighted in green is the code that we

completed. This section of code is the port mapping statements. The final section of our CPU

code is mapping the outputs to potential display segments.

 Panova 8

Problems Occurred & Solutions

During development of the Simple CPU, we ran into several problems in the VHDL and

control‐FSM. Below are the two most impactful issues and how we resolved them.

Firstly, RAM never saw the correct address. Every fetch returned the same data (or “X” in

simulation), regardless of PC value. We had a full 8-bit marRegOut register but never routed its

low five bits into the RAM’s Read_Addr port. The signal marToRamReadAddr stayed at its

default “00000.”

As a solution, we inserted marRegOut <= irOut(7 downto 5) &marToRamReadAddr to ensure all

bits are properly used and are not overflowing at any instance. Once we placed it, marOut

matched the PC or IR address as expected, and memory fetches began returning the correct

words.

The other problem was that FSM would not start in the fetch state. In simulation the control unit

sat in an undefined state and never asserted ToPcIncrement. We forgot to initialize current_state

so our state machine began in the first enumerated type (which happened to be load_mar) instead

of increment_pc.

Solution was to set signal current_state : cu_state_type := increment_pc; in ControlUnit. This

ensures the very first micro-cycle pulses ToPcIncrement and kicks off the fetch sequence.

 Panova 9

Competed Code

ALU code

--Arithmetic Logic Unit Code​
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
-- 8 bit operands and output
ENTITY alu IS
PORT(
A : in std_logic_vector​​ ​ (7 downto 0);
B : in std_logic_vector​​ ​ (7 downto 0);
AluOp : in std_logic_vector​ ​ (2 downto 0);
output : out std_logic_vector​(7 downto 0)
);

end alu;

-- decode op code, perform operation,
architecture behavior of alu is
begin
process(A,B,AluOp)
begin
if(AluOp="000") then output<=(A+B);
elsif(AluOp="001") then output<=(A-B);
elsif(AluOp="010") then output<=(A and B);
elsif(AluOp="011") then output<= (A or B);
elsif(AluOp="100") then output<= B;
elsif(AluOp="101") then output<= A;

end if;
end process;
end;

 Panova 10

memory_8_by_32 code

-- 8 By 32 Memory Array
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity memory_8_by_32 is

Port(
​ clk:​ ​ in std_logic;​
​ Write_Enable: in std_logic;
​ Read_Addr:​in std_logic_vector​ (4 downto 0);
​ Data_in: ​ in std_logic_vector​ (7 downto 0);
​ Data_out: ​out std_logic_vector(7 downto 0));
​ end memory_8_by_32;
​
​ architecture behavior of memory_8_by_32 is
​ type ram_type is array(0 to 31) of std_logic_vector(7 downto 0);
​ --instructions / data go into memory here
​ signal Z:
ram_type:=("00000101","00100011","01000111","00000111","00101000","000
00110","00010100","00001101","00000001","10110100","10001010","1010101
0","10101001","00000000","10100101","01010101","10101110","10110100","
10001010","10101010","10101001","00000000","10100101","01010101","1010
1110","10110100","10001010","10101010","10101001","00000000","10100101
","01010101");
​ Begin
​ Process(clk,Read_Addr, Data_in, Write_Enable)
​ Begin
​ --Read from memory
​ if(clk'event and clk='1' and Write_Enable='0') then
​ Data_out<=Z(conv_integer(Read_Addr));
​ --Write to Memory
​ elsif(clk'event and clk='1' and Write_Enable='1') then
​ Z(conv_integer(Read_Addr))<=Data_in;
​ end if;
​ end process;
​ end;

 Panova 11

ProgramCounter code

--Program Counter Code
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
--Increments the program counter by 1 if there is a positive edge clock and increment =1
entity ProgramCounter is
port (
​ output : out std_logic_vector(7 downto 0);
​ clk : in std_logic;
​ increment : in std_logic
);
end;

architecture behavior of ProgramCounter is
begin

process(clk,increment)
--Define a counter variable as an integer and initialize it to 0 (use variable counter: integer:=)
and fill in the value
--INSERT CODE HERE
​ variable counter : integer := 0;

begin
​ --Create an if statement to check for the condition of a positive edge clock and increment
=1
​ if (clk'event and clk = '1' and increment = '1') then
​ ​ --Increment counter variable by 1
 counter := counter + 1;
​ ​
​ ​ --Output the counter variable as a std logic vector of 8 bits,
​ ​ --Use function conv_std_logic_vector(counter,8)
​ ​ output <= conv_std_logic_vector(counter, 8);
​ end if;
end process;
end behavior;

 Panova 12

reg code

--Register component for CPU
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity reg is
port (
​ input : in std_logic_vector​​ (7 downto 0);
​ output : out std_logic_vector​ (7 downto 0);
​ clk : in std_logic;
​ load : in std_logic
);
end;

architecture behavior of reg is
begin

process(clk,load)
begin
​ if (clk'event and clk = '1' and load = '1') then
​ ​ output <= input;
​ end if;
end process;
end behavior;

 Panova 13

sevenseg code

--Seven Segment Display, keep in mind the output here is 8 bits to
match
--The CPU component outputs, when connecting the pins, ignore the MSB
of o or o(7)
library ieee;
use ieee.std_logic_1164.all;

entity sevenseg is
port(
​ i : in std_logic_vector(3 downto 0);
​ o : out std_logic_vector(7 downto 0)
);
end sevenseg;

architecture logic of sevenseg is
begin
o <= "00000001" when i="0000" else
​ "01001111" when i="0001" else
​ "00010010" when i="0010" else
​ "00000110" when i="0011" else
​ "01001100" when i="0100" else
​ "00100100" when i="0101" else
​ "00100000" when i="0110" else
​ "00001111" when i="0111" else
​ "00000000" when i="1000" else
​ "00000100" when i="1001" else
​ "00001000" when i="1010" else
​ "01100000" when i="1011" else
​ "00110001" when i="1100" else
​ "01000010" when i="1101" else
​ "00110000" when i="1110" else
​ "00111000" when i="1111";
end;

 Panova 14

TwoToOneMux code

--Mux used to create a shared connection between PC and IR to the MAR
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity TwoToOneMux is
port (
​ A : in std_logic_vector​ ​ ​ (7 downto 0);
​ B : in std_logic_vector​ ​ ​ (7 downto 0);
​ address : in std_logic;
​ output : out std_logic_vector​ (7 downto 0)
);
end;

architecture behavior of TwoToOneMux is
begin

process(A,B,address)
begin
​ if (address='0') then
​ output <= A;
​ elsif(address='1') then
​ output <= B;
​ end if;
end process;
end behavior;

 Panova 15

ControlUnit code

-- Control Unit Code
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity ControlUnit is
port (
 -- Op code used for instructions (NOT the ALU Op)
 OpCode : in std_logic_vector(2 downto 0);
 -- Clock Signal
 clk : in std_logic;
 -- Load bits to basically turn components on and off at a given state
 ToALoad : out std_logic;
 ToMarLoad : out std_logic;
 ToIrLoad : out std_logic;
 ToMdriLoad : out std_logic;
 ToMdroLoad : out std_logic;
 ToPcIncrement : out std_logic := '0';
 ToMarMux : out std_logic;
 ToRamWriteEnable : out std_logic;
 -- This is the ALU op code, look inside the ALU code to set this
 ToAluOp : out std_logic_vector (2 downto 0)
);
end;

architecture behavior of ControlUnit is
 -- Custom Data Type to Define Each State
 type cu_state_type is (
 load_mar, read_mem, load_mdri, load_ir, decode,
 ldaa_load_mar, ldaa_read_mem, ldaa_load_mdri, ldaa_load_a,
 adaa_load_mar, adaa_read_mem, adaa_load_mdri, adaa_store_load_a,
 staa_load_mdro, staa_write_mem,
 increment_pc
);

 -- Signal to hold current state
 signal current_state : cu_state_type := increment_pc;

begin
 -- Defines the transitions in our state machine

 Panova 16

 process(clk)
 begin
 if (clk'event and clk = '1') then
 case current_state is
 -- Increment the pc and fetch the instruction, then load the IR
 when increment_pc => current_state <= load_mar;

 -- FETCH sequence
 when load_mar => current_state <= read_mem;
 when read_mem => current_state <= load_mdri;
 when load_mdri => current_state <= load_ir;
 when load_ir => current_state <= decode;

 -- Decode Opcode to determine next instruction
 when decode =>
 if OpCode = "000" then current_state <= ldaa_load_mar; -- LOADA
 elsif OpCode = "001" then current_state <= adaa_load_mar; -- ADDA
 elsif OpCode = "010" then current_state <= staa_load_mdro; -- STOREA
 else current_state <= increment_pc; -- NOP
 end if;

 -- LOADA micro-steps
 when ldaa_load_mar => current_state <= ldaa_read_mem;
 when ldaa_read_mem => current_state <= ldaa_load_mdri;
 when ldaa_load_mdri => current_state <= ldaa_load_a;
 when ldaa_load_a => current_state <= increment_pc;

 -- ADDA micro-steps
 when adaa_load_mar => current_state <= adaa_read_mem;
 when adaa_read_mem => current_state <= adaa_load_mdri;
 when adaa_load_mdri => current_state <= adaa_store_load_a;
 when adaa_store_load_a => current_state <= increment_pc;

 -- STOREA micro-steps
 when staa_load_mdro => current_state <= staa_write_mem;
 when staa_write_mem => current_state <= increment_pc;

 when others => current_state <= increment_pc;
 end case;
 end if;
 end process;

 -- Defines what happens at each state, set to '1' if we want that component on
 process(current_state)

 Panova 17

 begin
 -- defaults
 ToALoad <= '0';
 ToMarLoad <= '0';
 ToIrLoad <= '0';
 ToMdriLoad <= '0';
 ToMdroLoad <= '0';
 ToPcIncrement <= '0';
 ToMarMux <= '0';
 ToRamWriteEnable <= '0';
 ToAluOp <= "000";

 case current_state is
 -- increment PC
 when increment_pc =>
 ToPcIncrement <= '1';

 -- MAR ← PC
 when load_mar =>
 ToMarLoad <= '1';

 -- memory read (no control outputs)
 when read_mem =>
 null;

 -- MDRI ← memory
 when load_mdri =>
 ToMdriLoad <= '1';

 -- IR ← MDRI
 when load_ir =>
 ToIrLoad <= '1';

 -- decode (all off)
 when decode =>
 null;

 -- LOADA: MAR ← IR
 when ldaa_load_mar =>
 ToMarMux <= '1';
 ToMarLoad <= '1';

 -- LOADA: memory read
 when ldaa_read_mem =>

 Panova 18

 null;

 -- LOADA: MDRI ← memory
 when ldaa_load_mdri =>
 ToMdriLoad <= '1';

 -- LOADA: A ← MDRI
 when ldaa_load_a =>
 ToALoad <= '1';
 ToAluOp <= "101"; -- pass-through A

 -- ADDA: MAR ← IR
 when adaa_load_mar =>
 ToMarMux <= '1';
 ToMarLoad <= '1';

 -- ADDA: memory read
 when adaa_read_mem =>
 null;

 -- ADDA: MDRI ← memory
 when adaa_load_mdri =>
 ToMdriLoad <= '1';

 -- ADDA: A ← A + MDRI
 when adaa_store_load_a =>
 ToALoad <= '1';
 ToAluOp <= "000"; -- ADD

 -- STOREA: MDRO ← A, MAR ← IR
 when staa_load_mdro =>
 ToMarMux <= '1';
 ToMarLoad <= '1';
 ToMdroLoad <= '1';
 ToAluOp <= "100"; -- pass-through B

 -- STOREA: write memory
 when staa_write_mem =>
 ToRamWriteEnable <= '1';

 when others =>
 null;
 end case;
 end process;

 Panova 19

end behavior;

CPU code

--Simple CPU template – this is the top-level entity
library ieee;
use ieee.std_logic_1164.all;

entity SimpleCPU_Template is
 -- These are the outputs you might tie to LEDs / 7-seg on the DE10-Lite
 port (
 clk : in std_logic;
 pcOut : out std_logic_vector(7 downto 0);
 marOut : out std_logic_vector(7 downto 0);
 irOutput : out std_logic_vector(7 downto 0);
 mdriOutput : out std_logic_vector(7 downto 0);
 mdroOutput : out std_logic_vector(7 downto 0);
 aOut : out std_logic_vector(7 downto 0);
 incrementOut : out std_logic
);
end;

architecture behavior of SimpleCPU_Template is
 --
 -- component declarations (memory, alu, reg, pc, mux, sevenseg,
 -- control-unit) – these match the individual .vhd files you’ll add
 --
 component memory_8_by_32
 port (clk : in std_logic;
 Write_Enable : in std_logic;
 Read_Addr : in std_logic_vector(4 downto 0);
 Data_in : in std_logic_vector(7 downto 0);
 Data_out : out std_logic_vector(7 downto 0));
 end component;

 component alu
 port (A : in std_logic_vector(7 downto 0);
 B : in std_logic_vector(7 downto 0);
 AluOp : in std_logic_vector(2 downto 0);
 output : out std_logic_vector(7 downto 0));
 end component;

 component reg

 Panova 20

 port (input : in std_logic_vector(7 downto 0);
 output : out std_logic_vector(7 downto 0);
 clk : in std_logic;
 load : in std_logic);
 end component;

 component ProgramCounter
 port (increment : in std_logic;
 clk : in std_logic;
 output : out std_logic_vector(7 downto 0));
 end component;

 component TwoToOneMux
 port (A : in std_logic_vector(7 downto 0);
 B : in std_logic_vector(7 downto 0);
 address : in std_logic;
 output : out std_logic_vector(7 downto 0));
 end component;

 component sevenseg
 port (i : in std_logic_vector(3 downto 0);
 o : out std_logic_vector(7 downto 0));
 end component;

 component ControlUnit
 port (OpCode : in std_logic_vector(2 downto 0);
 clk : in std_logic;
 ToALoad : out std_logic;
 ToMarLoad : out std_logic;
 ToIrLoad : out std_logic;
 ToMdriLoad : out std_logic;
 ToMdroLoad : out std_logic;
 ToPcIncrement : out std_logic;
 ToMarMux : out std_logic;
 ToRamWriteEnable : out std_logic;
 ToAluOp : out std_logic_vector(2 downto 0));
 end component;

 --
 -- internal signals (wires between components)
 --
 -- memory
 signal ramDataOutToMdri : std_logic_vector(7 downto 0);

 Panova 21

 -- MAR multiplexer
 signal pcToMarMux : std_logic_vector(7 downto 0);
 signal muxToMar : std_logic_vector(7 downto 0);

 -- RAM
 signal marToRamReadAddr : std_logic_vector(4 downto 0);
 signal mdroToRamDataIn : std_logic_vector(7 downto 0);
 -- full 8-bit MAR register output
 signal marRegOut : std_logic_vector(7 downto 0);

 -- MDRI
 signal mdriOut : std_logic_vector(7 downto 0);

 -- IR
 signal irOut : std_logic_vector(7 downto 0);

 -- ALU / Accumulator
 signal aluOut : std_logic_vector(7 downto 0);
 signal aToAluB : std_logic_vector(7 downto 0);

 -- Control-unit control lines
 signal cuToALoad : std_logic;
 signal cuToMarLoad : std_logic;
 signal cuToIrLoad : std_logic;
 signal cuToMdriLoad : std_logic;
 signal cuToMdroLoad : std_logic;
 signal cuToPcIncrement : std_logic;
 signal cuToMarMux : std_logic;
 signal cuToRamWriteEnable : std_logic;
 signal cuToAluOp : std_logic_vector(2 downto 0);
begin
 --
 -- >>> PORT-MAP STATEMENTS GO HERE <<<
 --

 -- RAM
 RAM0 : memory_8_by_32
 port map (
 clk => clk,
 Write_Enable => cuToRamWriteEnable,
 Read_Addr => marToRamReadAddr,
 Data_in => mdroToRamDataIn,
 Data_out => ramDataOutToMdri

 Panova 22

);

 -- Accumulator register
 REG_ACC : reg
 port map (
 input => aluOut,
 output => aToAluB,
 clk => clk,
 load => cuToALoad
);

 -- ALU
 ALU0 : alu
 port map (
 A => mdriOut,
 B => aToAluB,
 AluOp => cuToAluOp,
 output => aluOut
);

 -- Program Counter
 PC0 : ProgramCounter
 port map (
 increment => cuToPcIncrement,
 clk => clk,
 output => pcToMarMux
);

 -- Instruction Register
 REG_IR : reg
 port map (
 input => mdriOut,
 output => irOut,
 clk => clk,
 load => cuToIrLoad
);

 -- MAR multiplexer
 MUX_MAR : TwoToOneMux
 port map (
 A => pcToMarMux,
 B => irOut,
 address => cuToMarMux,
 output => muxToMar

 Panova 23

);

 -- MAR register
 REG_MAR : reg
 port map (
 input => muxToMar,
 output(4 downto 0) => marToRamReadAddr,
 clk => clk,
 load => cuToMarLoad
);

 -- MDRI register
 REG_MDRI : reg
 port map (
 input => ramDataOutToMdri,
 output => mdriOut,
 clk => clk,
 load => cuToMdriLoad
);

 -- MDRO register
 REG_MDRO : reg
 port map (
 input => aToAluB,
 output => mdroToRamDataIn,
 clk => clk,
 load => cuToMdroLoad
);

 -- Control Unit
 CU0 : ControlUnit
 port map (
 OpCode => irOut(7 downto 5),
 clk => clk,
 ToALoad => cuToALoad,
 ToMarLoad => cuToMarLoad,
 ToIrLoad => cuToIrLoad,
 ToMdriLoad => cuToMdriLoad,
 ToMdroLoad => cuToMdroLoad,
 ToPcIncrement => cuToPcIncrement,
 ToMarMux => cuToMarMux,
 ToRamWriteEnable => cuToRamWriteEnable,
 ToAluOp => cuToAluOp
);

 Panova 24

 --
 -- Any optional display connections (LEDs / seven-seg) can be
 -- added below. Example lines are commented out:
 --
 pcOut <= pcToMarMux;
 irOutput <= irOut;
 aOut <= aToAluB;
 marOut <= marRegOut;
 mdriOutput <= mdriOut;
 mdroOutput <= mdroToRamDataIn;
 incrementOut <= cuToPcIncrement;
​
 marRegOut <= irOut(7 downto 5) &marToRamReadAddr;

end behavior;

 Panova 25

Finite State Machine​

Figure #1: Finite State Machine

 Panova 26

Block Diagram

Figure #2: Block Diagram

 Panova 27

Waveform snip

Figure #3: Waveform snip

 Panova 28

Waveform Result Discussion

In the 10 ns-clock simulation, the CPU cleanly steps through LOADA 5, ADDA 3, and STOREA

7 without any spurious signals. Each instruction begins with five fetch cycles—PC increments,

MAR←PC, MDRI←MEM, IR←MDRI, decode—then the execute micro-steps: LOADA reads

address 5 and loads A=6; ADDA reads address 3 and updates A→13; STOREA drives

MDRO=13, pulses the write enable, and returns to fetch. Throughout, pcOut, marOut,

mdriOutput, irOutput, and aOut update exactly as expected, and incrementOut pulses once per

instruction, confirming correct implementation of our FSM and datapath.

 Panova 29

Conclusion

​ This project was an excellent conclusion to the material that we have been learning in the

lab this semester. In past labs we followed step by step instructions provided by the lab TA but

this was a much more hands off experience. It was reassuring to see that my partner and I could

implement an entire daunting CPU by ourselves. I feel like this project is a valuable experience

that I can share with an employer. I feel like it would have been valuable to learn more about

how to use the VHDL software prior to this lab project. We were never explicitly taught how to

use the software by anything other than the labs. I learned material in class and that was

something we were never explicitly taught. Overall I thoroughly enjoyed the material and

concepts presented in this class and feel that it has taught me a specific career path that I may

like to follow.

	Introduction
	Hardware Description
	Software Description
	Description of VHDL files
	Program Counter
	Reg
	SevenSeg
	ALU
	TwoToOneMux
	Memory_8_by_32
	Control Unit
	CPU

	Problems Occurred & Solutions
	Competed Code
	ALU code
	memory_8_by_32 code
	ProgramCounter code
	reg code
	sevenseg code
	TwoToOneMux code
	ControlUnit code
	CPU code
	

	Finite State Machine​
	Block Diagram
	Waveform snip
	Waveform Result Discussion
	Conclusion

